—
[

Y IF RSN S Y A

7z7 g
D740 7 =
TRANSLATION AND EXECUTION OF DISTRIBUTED

ADA PROGRAMS: IS IT STILL ADA?*

by

Richard A. Vol:
Trevor N. Mudge

Gregory D. Buzzard
Padmanabhan Krishnan

Robotics Research Laboratory
College of Engineering
University of Michigan

Ann Arbor, Michigan 48109

Auyugn S 1t
e€ @ m ~l AP Goct
\fvd
|

Abstract

Distributed execution of a single program is becoming increasingly important for embed-
ded real-time systems. The single program approach to distributed programming allows
the advantages of language level software engineering developments to be fully realized
across machine boundaries. This paper examines some of the fundamental issues and
trade-offs involved in the translation and execution of programs written in the Ada
language and intended for distributed execution. A set of principal dimensions to the
problems are identified and the impact of these dimensions discussed. A set of possible
elements of the language which might be distributed are identified and the consequences
of their distribution discussed. Library subprograms and library packages are identified

as natural distributable units of the language. The importance of the program-to- -
processor/memory mapping is also discussed.

(&ASA-CR—IGIG‘&) IEANSLATICY AND EXIEC

(J kY UTICON -7C

CF DISlR;EU@ED AL2 PECGEAES: IS 1T STILL Na7-70460
AlA? (Michigan Uciv.) 27 ¢ Avail: NTIS

Unclas
00,61 00794C9

Ada is o registered trademark of the Department of Defense.

®This work was partially sponsored by Land System Division of General Dynamies, Grant No. DEY-
601540 and NASA, Grant No. NAG 2-350.

7l rIES

1. Iatroduction

There has been considerable work done on the subject of parallel programming (see
the excellent survey of [1)). The bulk of this work bas concerned itself with shared
memory architectures. ln contrast, little has been done in the case of programs that run
on distributed systems [2]. However, distributed execution of a single program is becom-
ing increasingly important for embedded real-time systems as such systems are increas
ingly implemented with distributed microcomputers. The single program approach to
programming closely coordinated actions of multiple computers allows the :Jnntaga of
language level software engineering developments, (e.g., abstract data types, separate
compilation of specifications and implementations, and extensive compile time error
checking), to be fully realized across machine boundaries. As yet, however, there are few

implementations which allow distributed execution of a single program.

While most efforts directed toward distributed programming have emphasized
developing communication mechanisms and designing languages to accommodate distri-
~ bution, we take the approach of adopting Ada and investigating its implications. We
take this approach because Ada secems destined to become a major factor in embedded
software systems, the Ada Language Reference Manual [3] indicates that distributed exe-
cution of Ada programs was in the minds of the language designers, and there is growing
interest in the use of Ada for distributed systems. This paper examines some of the fun-
damental issues and trade-offs for distributed execution of a single program written in

the Ada language.

A few distributed Ada systems have been proposed and/or are in the process of
being constructed. Cornhill [4, 5] describes the Ada Program Partitioning Language
(APPL) for distnbuting an Ada program among a set of processors. This system permits
the distribution of a wide variety of Ada elements. Jessop [8] advocates the use of a
package type to allow programs in the language to dynamically create nodes. The
extension to Ada implemented by Intel also includes a package type [7]. The package
type, however, is a modification of the language. Armitage and Chelini [8] present a
general description of four approaches to programming distributed systems in Ada. The
approaches are described in general terms and no implementations or detailed designs
are indicated. Indeed, Armitage and Chelini’s fourth approach does not really qualify for
distributed program execution.

The most comprehensive study to date is by Tedd, et al. [9). They advocate an
approach based upon virtual nodes. Full Ada is supported on each virtual node, which
must sapport shared memory. Communication between virtual nodes is allowed only by

task rendesvous. They describe an extensive system for copstructing distributed pro-
grams at link time, i.e., the mapping of the programs onto processors is done after the
program is written, providing greater flexibility in the construction of the execution sys-
tem. However, it is necessary for the programmer to plan for the distribution by care-
fully designing the original program.

Mayer, et al., [10] describe some basic timing problems in cross processor task entry
calls and describe a pretransiator approach which uses pragmas to specify the distribu-
tion. An important feature of this approach is that it can use existing compilers to per-
form the compilation. Based on the idea of [10], an Ada subset translation system for
distributed execution bas been implemented and is in operation at the University of
Michigan. ' '

Each of the above systems has either adopted a limited viewpoint or presented only
a very geoeral discussion lacking in detail. In this paper we examine some of the funda-
mental issues involved in translation for, and distributed execution of, Ada programs
and the relation of these to the definition of the language. We conclude that in the con-
text of distributed program execution several aspects of the language definition need

reflinement.

2. Preliminaries

Ada programs which are intended for distributed execution must deal with several
forms of heterogeneity: heterogeneity of addressing program objects, heterogeneity of
processing resources, and heterogeneity of the environment of the individual processors
making up the distributed system. This section proposes that to account for this hetero-
geneity. a program definition must include some information on the distribution of the
program. It further argues that the units of the language which may be distributed
should be more precisely specified in the language definition. Finally, the major dimen-
sions to the problem are identified and criteria which should be used in evaluating pro-
posed translation/execution systems presented.

3.1. Distributed Ada Programs

Computer programs are written to produce output of some kind or have some
effect on the eavironment. Embedded systems particularly emphasize the latter. How-
ever, programs do not, in and of themselves, have an effect; it is only their execution
which produces an effect. When s program is executed on a uniprocessor, this distinc-
tion is generally unimportant and one often thinks of the program alone as producing
the effect. However, when a program is executed in a distributed manner on a set of

processors, the effect of the execution is impacted by an additional fundamental com-
ponent, the mapping of the program onto the cooperating processors and memory. We
will call the program/mapping pair an ezecstion object. '

It is thus the execution object which defines the effect which will result. For exam-
ple, consider the control of a six degree of freedom robot by seven computers, one con-
trolling each joint of the robot and one providing overall coordination of joint move-
ment. Suppose that a task is assigned to the control of each joint. While the individual
computers and interfaces may be identical, the effect of executing the program for two
different mappings of tasks to processors will certainly be different; the robot would, in
general, have drastically different motions. While the mapping details would certainly
be hidden at higher levels of abstraction, it is also clear that the mapping must be expli-
cit at some low level of abstraction as discussed in [11}. On the other hand, in many
cases the effect of an execution object can be independent of the mapping component of
the object.

It is also the case that translators whose outputs are intended for distributed execu-
tion must have some inowledge of the mapping. In general, the mapping can be static
or dynamic, implicit or explicit, and come into existence and be used at any of several
points in the program/compile/link/execute sequence. We next extract from the map-
ping the essential ingredients which, in combination with the program, both define the
effect of an execution object and provide sufficient information to allow compilation to
be reasonably performed. To accomplish this, we divide the mapping into two parts. In
the first part, elements of a program are designated as being distributable, without bind-
ing them to a specific machine, and certain characteristics of the mapping (roughly. the
type of addressing required to access objects and the processor types which are to be
able to execute fragments of code — see Sec. 4) specified. We call this part a distribution
specification. The second part assigns elements of a program to specific machines. We
call this the dinding specification. The mapping is thus the pair (distribution specifica-
tion, binding specification).

We will then define a Distrsbuted Ads progrem to be an Ada program together with
its distribution specification, and the portions of the binding specification necessary to
define the effect of executing the corresponding execution object. The distinction
betweea an execution object and e distributed Ada program is thus the bindings which
are unessential to describe the effect of the execution. We will call the combination of
the translation system, the distribution and binding specification mechanisms and the
ran time system which supports the translation and execution of distributed Ada

programs a distributed Ads aystem.

The above definitions are only concerned with the content needed to allow program
translation and to define execution behavior. Execution objects can be represented in
many different ways. The distribution and binding specifications could be made explicit
in a program, e.g., via pragmas or specially defined packages, they could be explicated
by completely separate specifications, or they could be determined implicitly by the run-
time system. The translation system mentioned in {10] is an example of the first, while
the APPL system introduced by Cornhill [4] is an example of the second. The remainder
of this paper will explore some of the fundamental charactenistics of distribution which

must be taken into account by any distributed translation system.

2.2. Units of Distribution

The choice of units of the language which are allowed to be distributed significantly
impacts both the translation process required and the execution efficiency obtainable.
The selection of distributable units is thus important. The Ada Language Reference
Manual (RM) takes a step toward making the definition of distributable units a part of
the language definition, but is not entirely precise. It is the opinion of the authors that
a more complete statement in the definition of the language is necessary to allow imple-

mentors to determine what they may and may not do.

The RM explicitly states that parallel tasks may be distributed, and further, that
any “parts of the actions of a given task™ may be distributed if the effect of the pro-
gram can be guaranteed by the implementation to not be altered. The latter would
clearly imply that individual statements and even expressions could be distributed
(which is highly desirable for parallel processing of some operations). It would seem that
subprograms could be distributed. However, internal data objects and packages are not
themselves actions or parts of actions. One might infer, therefore, that they may not be
distributed, though this is not explicitly forbidden. Library packages are not mentioned
at all; since their distribution is not explicitly forbidden, it might be inferred that they
may be distributed. On the other hand, since what the RM does say about units of dis-
tribution is to explicitly permit some distribution, it might be inferred that anything not
mentioned may not be distributed. Clarification is needed.

It is clear that the RM does not require distribution of anything. Nor does it imply
that because an implementation chooses to distribute one kind of unit it must also allow
distribution of other distributable units. It is not stated whether or mot it is required
that an implementation which allows a unit to be distributed in some circumstances

Ty

must do so in all circumstances. For example, is it permissible to limit the distribution of
statements to non-recursive contexts! Similarly, there is no indication of whether or not
ab implementation can choose to restrict the language in some way to accomplish the
distribution, e.g., disallowing data objects in the specification of packages which have
tasks that are to be distributed.

The latter two possibilities seem incopsistent with the philosopby of language uni-
formity spparent in Ada. Indeed, there are two principles which we feel should underlie
the choice of distributable units: 1) the definition should be fixed and not a function of
the dimensions of the problem, and 2) language uniformity should be maintained.

In Section 3 we explore the implications of the units of distribution on translation
difficulty, efficiency of code execution, language uniformity and distributed programming
expressibility in order to provide more complete background for the decisions which

must be made regarding the above issues.

2.3. Dimensions of distribution
There are three major dimensions which parameterize a distributed Ada system and
which will impact both the translation and execution phases of the system, but which
are pot part of the language specification. These, together with some of their typical
values are:
e the memory interconnection architecture of the system upon which the distri-
buted Ada programs are to execute,
- shared memory systems
- distributed memory systems
- mixed shared & private memory systems
- massively paralle] systems
e the binding time of the distribution,
- prior to compile time
- between front end and back end compilation phases
- at linking time
- at run-time
o the degree of homogeneity of the processors involved.
- identical processors and system configurations

- identical processors and different configurations
- different processors, but similar dats representations

- completely heterogeneous

February 1988

Figure 1

There are three major impacts of the memory architecture on the distributed translation
system, the access time to objects, information which must be included in the distribu-
tion specification and the addressing strategies which used. Figures 1 and 2 illustrate
two of the possible system architectares. Of particular interest is the mixed
shared/private memory scheme of Figure 2 since it both has a richer set of possible dis-
tributior modes requiring more complex implementation.

Only certain times for specifying the distribution and binding are reasonable, and
depending upon the times chosen, several new utilities are needed for the compiler
enviroament.

The impact of heterogeneity can be viewed in several different ways. First, it can
be viewed as requiring translations between the data and code representations of the dif-
ferent processors. Second, it could be viewed as part of the semantics of the program.
Or, the two views could be combined.

3.4. Criteria for comparison

The comparisons of alternatives is based uwpon obe concept, access to remote
objects. Based upon this, three different, and sometimes competing criteria arise,
..... Aine seanectively. to the programmer’s, the translator’s and the run-time

system's view of the distributed programming problem. These are:
e distributed program expressibility
e translation difficulty

e execution efficiency

Distributed program expressibility is concerned with the mechanisms for specifying |
the distribution of s program among a set of processors and memory. Are there external
tools for expressing the distribution of the program? Or is the distribution expressible
directly as part of the program? Does the notation used in a program explicitly indicate,
in some way, that reference to a remote object requires communication with a remote
processor and thus will be appreciably slower than references to local objects?

In the case of transiation difficulty, the measure is the complexity of the constructs
which must be included in the compiled code to ensure that access to remote objects can
be accomplished while maintaining sll of the other characteristics of Ada. For example,
how much context information must be transmitted with remote object reference to
sllow correct address determinations to be made while retaining Ada scoping rules with
recursive procedure calls crossing machine boundaries? How are task terminations to be
bandled? How does one bandle operations associated with remotely defined types! How

Show
Mam

Figure 3

is addressing of remote objects handled’
Execution efficiency, particularly for real-time operations, is perbaps the most
important criteris. It is likely to be most influenced by the object location and address-

ing mechanisms for object references.

3. Unit o_f Distribution Considerations

When we speak of a unit of distribution (or sometimes distributable nnitj. we will
mean » unit of the language which is allowed to be placed at any one of a set (of at least
two) of memories. We therefore begin by examining the ways in which program ele-
ments can be assigned. There are three distinct kinds of location assignments to be
made in the program mapping: 1) the memory unit to which data is assigned, 2) the -
memory unit to which code is assigned, and 3) the processor which is to execute the
code. This classification is necessitated, in particular, by the mixed private/shared
memory of Figure 2. Since each processor in this configuration has direct access to two
memories, specifying a processor which is to execute code does not imply the memory to
which either the data or code must be assigned. Similarly, since the shared memory can
be accessed by multiple processors, assigning the code to shared memory does not imply
which processor is to execute the code.

There are three types of addressing which will be called privately addressable
(memory accessible only by the processor making the reference), shared addressable
(shared memory) and remotely addressable (must be accessed via communication with
another cpu). We will use the term directly addressable to mean that the addressing
may be either shared or privately addressable. We require one rule of reasonableness,
that the memory on which a code segment resides be directly addressable from the pro-
cessor which is to execute the code. For most memory architectures this implies that the
second and third cases collapse into one. It is only in the mixed private/shared case that
the distinction must be made.

It will sometimes be desirable to consider s combination of data and code as a unit
e.g. if we consider a package as a unit of distribution, by which we will mean that the
memories on which these are stored, while possibly being distinct, must be directly
addressable from the processor executing the code portion.

The comparison of units of distribution will be framed on four major issues that
arise, in one form or another, for most of the possible choices for units of distribution.

These are:

Fshruary 1088

10

° Implied remote object access
. Object visibility and recursive execution
° Task termination problems

° Distributed types

The impact of the different choices for units of distribution on these issues will be dis-
cussed. Much of this analysis will be based upon interactions that are allowed among dif-
ferent elements of the language. It is important to note that all allowed inumtioﬁs
must be examined in considering the possible units of distribution, whether or not they
correspond to good programming practice, since all interactions defined in the RM will
have to be implemented. |

An argument will be made that library subprograms and library packages are rea-
sonable choices for the basic units of distribution. It will also be shown that to obtain
reasonable execution speeds with this basic choice it will be necessary to distribute data
objects corresponding to type definitions, and certain operations corresponding to these

types.

3.1. Implied Distributed Object Access

Unless restricted ip some way not currently specified in the language, the choice of
packages, subprograms, tasks or blocks as units of distribution leads to a requirement
that the progr#miner be able to reference distributed data objects, subprograms, tasks
and type definitions. This follows because in the cases cited in Sec.2.2 some executable
object is distributed from either the context in which it is defined or the context in
which it is made visible via a with. Thus, either it must be able to reference the kinds of
objecis which can occur in the specification of that context, or, entities in its specifica-
tion must be able to be referenced from that context. In particular, if a library package
is a unit of distribution, then any subprogram or package including that package via a
with must be able to reference any data objects, types, subprograms or tasks defined
within it. '

This implies a fine granularity of access, i.e, to individual data items. Except in
the case of the mixed memory architectures, the time required for this access will involve
both a communication channel delay and processing time on both processors involved.
This delay will almost certainly be several orders of magnitude slower than accessing
directly addressable objects, and will thus not be desirable for most applications.

11

There have, therefore, been suggestions that one avoid this delay by placing restric-
tions on what can be included in declarative regions or specifications to be distributed,
e.g., disallowing data object or subprograms in the specification of » package to be dis-
tnibuted. There are two reasons why such restrictions are inadvisable. First, distributed
access to data objects is highly desirable in some instances. For example, if one has a
large database which is to be accessed in » number of different ways by tasks residing on
different processors, a useful beuristic is to distribute the database in such a way that
the individua! data items reside in memory directly addressable by the procéaor which
will most frequently operate on them. This implies a need for shared variables across
machines. Even the distribution of small data objects makes sense in the context of a
mixed private/shared memory. Second, such restrictions would be a change in, and dis-
rupt the uniformity of, the language definition. One should not, for instance, allow
packages in their full generality under some circumstances and disallow packages to con-
tain data objects in others.

There is an important consequence of remote access to objects other than tasks
with respect to transiator implementation. Access to data objects or subprograms by
code during its execution is part of the normal flow of control and normally given no
special recognition with respect to the sharing of the processor, i.e., such accesses are not
points at which the scheduler would normally be invoked. Since remote access involves
sizable (in comparison to cpu imstruction times) delay, remote references should be
treated as points at which the scheduler is invoked so that other tasks may use the
referencing cpu while the referencing thread of control awaits completion of the refer-

ence. Similarly, receipt of a message completing a remote reference should also be

treated as a scheduling point.

3.2. Object Visibility and Recursive Execution

It is pecessary to distinguish between the distribution of an object and distributed
access to it. As noted above, distributed access to an object can be required as a conse-
quence of distributing & larger item, such as a package. Distribution of an object itsell
means placing the object at a location different from the location containing the context
surrounding the definition. While both imply a need for distributed access to the data
object, the latter carries other implicstions as well. First, due to the possibility of recur
sive procedure calls, it implies the need for passing context information in some way
with all references to the distributed object. Second, the implications of the program
may be less clear to the programmer. We illustrate both points.

13

Suppose that the unit which creates an object (benceforth referred to as the C-

unit), and the unit which refers to it (the R-unit) are at different sites. If the C-unit can

" be recursively called, many instances of it and its variables can co-exist. It then becomes

necessary to export the context of the C-unit to all R-units accessing the objects in the

C-unit to ensure that the correct version of the object is referenced. For example, con-
sider the following pair of procedures involved in recursive calls:

procedure Pl is — Suppose this is the C-unit and is on machine M1
X:INTEGER;
|
procedure P2 is — Suppose this is on machine M2 3£ M1

begin
|
X, . -- a remote reference
Pl; - 3 recursive call
I
end P2;
begin ~ P1
|
P2;
|
end PI;

Since there will be many instances of the variable X, some mechanism must be
developed to provide P2 with appropriate context information so that it can reference
the correct instance of X, most likely by passing context information as an implicit
parameter with the call to P2. In [10] P1 and P2 each have an agent on the opposite
machine from which they reside, and communicate via a system of mailboxes. Each
invocation of Pl instantiates a new version of P2’s agent and creates a pew mailbox
through which P2 and its appropriate agent communicate. The mailbox id is passed to
P2 upon its call, and essentially provides the proper context. This scheme has the
advantage of being implementable with a pre-translator which allows existing Ada com-
pilers to be used, but has the disadvantage of required an extra message to be passed at
the exit of each call to P2 to tell its agent that it is done.

Similar problems of maintaining the proper context arise with the distribution of
data objects, functions, tasks or blocks. This can result in a large number of messages
between the sites and » corresponding loss of time if the C-unit and the R-units do not
share s common memory. The eause of this difficulty is recursive subprogram calls in
which some part of the recursive subprogram is remote from the rest. While it is

13

generally inadvisable to write programs in such a way as to require this type of remote
referencing within recursively called subprograms, if subprograms, tasks, blocks or data
objects are themselves distributable (as opposed to being distributed as part of a coarser
object such as a package), an implementation is obliged to implement mechanisms to

allow such usage.

If only library subprograms and library packages are allowed as units of distribu-
tion, all instances of recursively created objects will reside at the same location as all
units which reference them, with the possible exception of objects created via the new
allocator. In the latter case, however, explicit address information is available and the
problem will pot arise. Thus, the use of library subprograms and library packages as
units of distribution both simplifies translator implementation and eliminates one possi-
bility for programmers to construct unnecessarily complex implicit inter-processor com-
munication. In those situations, as indicated above, in which it is desired to distribute
data objects, the objects to be distributed may be encapsulated into a package, and the
_ package then distributed.

A further consideration in the distribution of data, subprogram and task objects is
distributed programming expressibility. It has been frequently stated that it is the phi-
losophy of Ada is to make explicit as much of the operation of a program as possible.
Since remote access is much more time consuming than local access, it may, in some
cases, be necessary to have control over the access time, i.c., to take alternative action if
an access is not completed within a given time. Ada provides the timed entry call
mechanism which can, in theory at least, be used for this purpose for task entry calls,
although [10] discusses a number of problems in the implementation of distributed timed
entry calls. However, there is nothing comparable for other forms of remote access, e.g.,
remote dats or subprogram references. It would, therefore, seem to be desirable to at
least make remote accesses explicit in a program so that the programmer or someone
reading a program could easily distinguish remote and local accesses. With the distribu-
tion of data, subprogram or task objects, there is no such labeling mechanism available.
Packages, however, must be explicitly imported into s program context, and if the use is
not used, each reference to an object of the package must be preceded with the package
name, flagging it as an external (to the present context) reference. To think of package
names as possibly designating remoteness makes the interpretation of package names
ambiguous and is far from an ideal solution. However, it can serve as a flag to the
reader to check further. It is a weakness of Ada that an indicator of remoteness is not

available in the language.

14

3.3. Task termination

Ada task termination is dependent not only upon the task potentially terminating,
but upon sibling and child tasks, and in some cases the parent task, as well. There are
several ways in which this can cause termination difficulty when the tasks are located on

different machines. Consider the following code fragment:

task body MASTER is
task SLAVE_l is
entry ENTRY_I;
end SLAVE_1;
I
task SLAVE 4 is
entry ENTRY_I;
end SLAVE_¢4;
|
task body SLAVE_l is
begin
loop
select
accept ENTRY_1;
or
terminate;
end select;
end loop;
end SLAVE_];
|
task body SLAVE 4 is
|
begin
loop
select
accept ENTRY_I;
or
terminate;
end select;

end loop;

16

end SLAVE_4;

|
begin ~ MASTER

l

end;
Suppose that MASTER bhas reached its end statement and completed. It will terminate
if SLAVE_] ... SLAVE_4 are all at their select statements snd waiting on an open ter-
minate alternative. In a uniprocessor situation, this does not cause unusual problems.
The run time system can check SLAVE_1 ... SLAVE_4 for waiting at the terminate
alternative. The key point is that because it can run at the highest priority it can do so
without any other task gaining control and making an entry call to SLAVE} ...
SLAVE_4 before it completes the check and takes appropriste action.

With distributed execution this is not always possible. Suppose that MASTER is
on processor M0, SLAVE_1 oa M1, and SLAVE_2 on M2, etc. Now, when MASTER
completes, it must check termination conditions on the other processors. Dwe to props-
gation delays, race conditions can arise. For example, suppose that MASTER has com-
pleted snd serially checks the status of each of its slaves and that the timing of the
events is as shown in Fig. 2. In this figure, C indicates that the unit has completed, an

SLAVE 1 N Y e § = § e

SLAVE 2 I e) e) e Y X

SLAVE_3 X e X e) e) e X
SLAVE_4 R e R
N 1 § L
LB LB | T

1
LI
M 7T T2 T3 T4

16

X indicates that a task is waiting on a terminate alternative, and a 0 indicates that it is
peither completed nor waiting on s terminate alternative. TI, ..., T4 are the times at
which the MASTER is sent messages from SLAVE_), ..., SLAVE_4, respectively, indi
cating their state at those times. Note that at time T1, MASTER has been sent a mes-
sage indicating that SLAVE_l is waiting at a terminate alternative. Between times Tl
and T2, SLAVE_4, which was not waiting at a terminate alternative makes a remote
entry call to SLAVE_1, removing it from the condition of waiting on a terminate alter
native. At time T2, SLAVE_4 bas entered » state where it is waiting on a terminate
alternative. Thus, SLAVE_1 ... SLAVE_4 all report that they are waiting at an open
terminate alternative. MASTER might then terminate when it should not.

of Vcoune, this problem could be blocked by making the slaves wait for further
entries until all termination checking was done, but if there were a long list of sibling
tasks some of which were not ready to terminate, this could cause SLAVE_] to unneces-
sarily delay its operation. This problem can be addressed by e more complex termina-
tion polling strategy. However, that solution is not the issue here; it is the need for a
complex strategy that is of interest. It can both increase the translation difficulty and
and impede the execution efficiency of a distributed program.

3.4. Distribution of Types

Distributed access to subprograms and tasks (as might resuit from distributing
- packages) implies the need to use remotely defined types, as both the specification of the
subprogram or task and the referencing unit must have visibility of the types of the
arguments used. The distribution of types is one of the more interesting aspects of dis-
tributing Ada programs as it forces a consideration of unusual implementation mechan-
isms.

There are three questions which must be considered when objects (data or task) are
created by units remote from the location of the unit in which the type is defined:

o Where are declared objects of the type located: on the site of the object declara-
tion or the site of the type declaration? '

e Where are allocated objects of the type located: on the site of the object declara-
tion, the site of the type declaration, the site of definition of the corresponding
access type, or the site of the declaration of the corresponding access object?

¢ Where are the operations of the type located!

For example, let data type A be defined in a package residing on machine M2, and X an

17

object of type A declared in a unit residing on machine M1. If X were placed oo M2
every reference to X from the unit in which it was declarcd would require a remote refer
ence. Thus, it is likely one would want X placed on M1. One must thea examine the
implications of the operations associsted with type A. Each defined data type has three
classes of operations, basic operations, implicit operations and user defined operations.
Some of the basic and implicit operations clearly should reside on M1, e.g., addition on
numeric types, storage allocation for objects of the type, etc. To maintain uniformity,
then, all implicit and basic operations should be imported to the machine on which the
declared object resides. This, in turn, implies that the basic and implicit operations of
distributed types must be replicated on all processors containing units which use the
types. - :

Applying the notion of language uniformity, then, one might expect that user
defined operations should also be replicated on all processors containing units which use
tke types. However, user defined operations appear explicitly in the region in which the
type is declared in the form of subprograms, and except for parameterless subprograms,
all subprograms are openiions for some type. Thus, replicating the user defined opera
tions of types roughly equates, in packages for instance, to replicating all of the subpro-
grams appearing in the package specification. This would also seem quite counter to
what one would expect from distributing a package, which might after all only contain
types and subprograms in its specification. Further, replicating user defined operations
implies a remote access to variables and subprograms defined within a package body. It
thus seems to the authors that it is only a slight sacrifice in language uniformity to not
replicate user defined operations and keep them on the memory to which the unit defin-
ing the type is assigned.

Now consider object creation via the new allocator. This requires the definition of
an access type for the object and the creation of an access object to hold address of the
allocated object. Each of these could potentially be declared in separate packages distri-
buted to different locations than either the one holding the original type definition or
the one which will ultimately execute the allocator. For example,

package Pl is - on machine M1
[task] type A ls . . ;

]
end P1;

18

with P1;
package P2 is — on machine M2
type B is access P1.A;

I
end P2;

. with P2;
package P3 is — on machine M3
C: B; -- declare an access variable to objects of type A

[
end P3;

with P1;
with P3;
procedure P4 is - on machine M4
I
begin
P3.C := new P1.A; - allocate 3 new variable object of type A

[
end P4;

In this case a remote access is required on each reference to P3.C regardless of where the
allocated object of type A is placed. The number of off-machine operations is minimized
by placed the allocated object either on M3 or M4. To maintain language uniformity,
then, one might elect to place the allocated object on M4.

Another set of considerations arise if A becomes a task type rather than a data
type. Tasks can then be dynamically instantiated and the programmer may wish to
control their placement on different processors as part of the algorithm being developed,
e.g., via pragmas. Or, one might wish to reduce or eliminate the task termination
problem described above. Both of these goals, however, have megative implications in
terms of run-time efficiency, distributed program expressibility, and transiational diffi-

culties.

19

Eliminating the distributed task termination problem requires that tasks be placed
on the same unit as their parents; then all of the checking of termination conditions will
take place on a single processor and can use the existing mechanisms for doing so. Thus,
declared tasks would be placed on the processor of the declaring unit while tasks created
through evaluation of the allocator would be placed on the processor holding the unit in
which the corresponding access type definition was elaborated. Any other choice allows
task parentage to be remote from the task object itself and thus leads to the distributed
termination problem. This would require placing an allocated object of type A in the
above example (with A now a task type) on M2 since that is where the access type is ela-
borated. .

However, if task objects are located coincidentally with their parents or at an arbi-
trary location assigned by the programmer, the code for task objects would have to be
replicated as was considered above for user defined operations on types. The same diffi-
culty of baving to access local variables declared in package bodies would arise, which
would then be remote with respect to the task body. This has obvious execution effi-
ciency degradations if tasks utilize shared variables, which they might well do in a con-
trolled way since in this case we are talking about shared variables hidden in the body of
a package. Moreover, it will become very difficult for a programmer to recognize which

references will be to remote variables.

Clearly, the translation also becomes more difficult. For example, consider separate
compilation of package bodies which contain task bodies for distributed task types.
Since package P2 and procedure P4 could be compiled before the body of Pl, the repli-
cated task bodies would be called for by normal compilation procedure before the body
containing them would have been compiled. This could be handled by making the com-
pilatioa process more involved and creating a record of units requiring the task bodies as
they are compiled. Then when the package body for P1 is compiled, this record could be
checked to determine other processors for which the task bodies must be compiled.
Nevertheless, it would be one extra level of complication.

There is not a good solution which satisfies all problems. We have just outlined
several problems with placing task objects anywhere other than at the location contain-
ing the task definition. Suppose, then, that to be consistent with previous comments
about using packsges as the unit of distribution we place task objects with the
corresponding task type definition. This means that implementors will have to face the
distributed task termination problem, and allocated and declared tasks will often be
remote from the creating units, and thus involve remote task entry calls. If it is desired

to place a task at apy particular node then that task, or task type definition, must be
encapsulated in a package. Consequently one could not bave the tasks of the same type
occurring st more than » single node. This is very constraining for some problems. To

avoid it would require baving package types, as suggested by Jessop [0].

3.5. Uaits of Distribution

As we have scen, there is no choice of distributable units within the current defini-
tion of Ada that is devoid of difficulties of one kind or another. Our preference is for
library subprograms and library packages. They represent a reasonable granularity of
distribution, they provide reasonable flexibility of distributed program structuring capa-
bilities, they do not require cross machine dynamic scope management, and they present
minimum difficulty to the compiler implementors. Data objects created from remotely
defined types should be placed with the unit creating them, with implicit and basic
operations being replicated. User defined operations should remain on the unit elaborat-
ing the corresponding type definition.

It would be our preference to restrict task objects created from task type defini-
tions to the units on which the corresponding type definitions are elaborated, and to
have package types added to the language specification. However, failing that, we
believe it is necessary to allow task objects to be placed on the unit initiating their crea-
tion and living with the concomitant problems.

In view of the fact that some of the decisions concerning units of distribution have
significant implications on the distributed language, we believe that the allowed units of
distribution should be specifically identified in the RM more explicitly than at present.

4. Impact Of Translational Dimensions On Distributed Execution

4.1. Distribution and Binding Specifications

There are three issues to consider with regard to this dimension: 1) when the distri-
bution and binding specifications are made, 2) whst is specified at these times, and 3) the
representation of the specifications. The first two of these issues are closely related to
the fact that different addressing mechanisms are required for private and non-private
memory references. Indeed it is this fact that leads to the need for separating the pro-
gram mapping into the two specifications. We will argue that the third issue is another
shortcoming of Ada vis-a-vis distributed programs.

21

4.1.1. Rup-time Specification of Distribution and Binding

Both the movement of an existing object and the creation and location of a new
objects are capabilities one might like to have. Deferring both the distribution and bind-
ing specifications until run-time means that the compiler will not even know whether or
pot object references are private or non-private. It will thus either have to use a gen-
eralized addressing mechanism (i.e., create a virtual target machine for all object
accesses), or use a private memory addressing mechapism which will then bave to be
dynamically converted to s non-private addressing mode for the objects to be dynami-
cally moved or created at a remote location. The use of a generalized mechanism
throughout would make local addresses unacceptably expensive. The dynamic conver
sion of a private memory addressing mechanism at run-time is likely to require changing
the instruction stream, an effort normally associated with compilation, i.e., something
akin to dynamic recompilation (st least backend processing) would be required. This is
likely to be complex and unacceptably slow.

If the distribution specification were given prior to backend processing by the com-
piler, the compiler would be able to use the right form of addressing and only the correct
values would have to be inserted when binding is given at run-time. A change in the
instruction stream would not be necessary. For movement of objects this is effectively a
relinking operation for all references to the object being moved, while for dynamic alloca-
tion only a single address would have to be established.

The above is the principal argument for providing the distribution specification by
compile-time. Subsequent sections on memory architectures and processor heterogeneity
will describe more completely the information which must be included in the distribution
specification. Even with this, however, the overhead associated with moving an object
may be substantial because of the relinking process. This suggests that only infre-
quently referenced objects such as whole programs be moved. Dynamic creation and
deletion of objects, however, may be critical to some algorithms.

The mechanism for expressing the program mapping is an important issue. Unfor-
tunately, the Ada language does not have a complete set of mechanisms by which run-
time binding can be conveniently expressed. The mew allocator provides a method of
dynamically creating a data or task object, but has po corresponding mechanism for
speciflying target location. Pragmas could be defined to supply this information, but
since pragmas are compile-time things, dynamic binding would require using a con-
struct Eke case selection with each case being » distribution pragma and an allocator.
This is rather awkward, especially for parallel processors with a large number of

processors. Further, there is 80 mechanism for dynamically creating snd binding pack-
ages, which we bave argued above are the natural units of distribution. Finally, there

are no mechanisms at all for specifying the movement of an object.

4.1.3. Distribution and Binding Specification at Link Time or Before

Distribution and binding specification at link time faces the same complexities
described for run-time, except that the overbead is incurred before run-time. Again,
stating the distribution specification by backend compile-time is essential in a pragmatic
sense.

The remaining choices are to specify the distributions either between the frontend
and backend compiler phases or prior to compilation. The former clearly allows more
flexibility in terms of changing the assignment of distributable units without requiring
full recompilation, while the latter permits a pre-translation scheme (described briefly in |
the next section) to be developed which can use existing compilers.

For distribution and binding specification at link time or before, language mechan-
isms for expressing the distribution are not required. Separate utilities may be used to
interactively specify the distribution and binding, or to read a separate “program file” of
specifications. However, as noted in section 3, from a point of view program expressibil-
ity it is desirable that the remoteness of objects be explicit. Also, the behavior of real-
time embedded systems will depend upon the program mapping as well as the program.
Thus, there must be an easy way for the programmer or software maintainer to read
and correlate the program and the mapping. Having the mapping represented explicitly
as part of the program would minimize the opportunity for a programmer to miscorre-
late the two parts. Hence, either the mapping should be present in the program initially,
e.g., via pragmas, or a decompilation tool is needed which can reproduce the original
program with distribution and/or binding specifications inserted in the program text.

In summary, the distribution specification should be given by compile-time. It
should either be included in the language or there should be a decompilation tool which
will recreate the program with the distribution specification inserted im the code.
Dynamic creation or movement of objects is rarely used in real-time programs because of
the overhead involved. In this case, similar tools are needed for the binding specifica-
tion, if binding is not included in the program. The Ada language does not have ade-
quate mechanisms for expressing dynamic allocation and movement of objects in the dis-

tributed setting.

4.3. Implications of Memory Architecture

The principal effects of the memory architecture are on the nature of the address-
ing mechanisms and the time required to access remote objects (thus impacting the deci-
sions on what to distribute). It was noted above that it is necessary for the distribution
specification to be made by compile-time. If the system consists of only a single type of
memory interconnection and this is knowa to the compilation system all that is required
is designating the objects which may be remote from the code which references them.

However, if more than one memory architecture type may be present, the distribu-
tion specification must be strengthened to include the type of connection between pro-
cessors and the memory bholding objects they reference. This is necessary so that the
compiler can generate the correct type of addressing mechanism. For example, consider
a loosely coupled system in which each of the individual nodes cobsists of a mixed
shared/private memory multi-processor system. The mechanism for addressing an
object in a local shared memory will almost tertainly be different than the one used for
accessing data in private or remote memory. The compiler needs to know the kind of
relationships which will be present in order to generate the correct instrection streams.
Actual binding, which can occur later, will then be essentially a linking operation which
merely supplies specific values for address references.

The distribution specification thus becomes a set of relations between pairs of
objects in which the relations correspond to kinds of addressing required for the first
object to reference the second. This is different from the binding specification which
makes an absolute assignment to each object. In fact, the relations for the distribution
specification can be deduced from the binding specification. However, separating the
weaker distribution specification and making only the distribution specification available
at compile time provides greater flexibility in distributed program development. It then
becomes necessary to check for consistency of the distribution specification. Further,
when binding is finally specified, it is necessary to check the consistency of the binding
specification with the distribution specification. Thus, the separation of the program to
processor mapping into distribution and binding specifications, while increasing flexibil-
ity, requires the development of additional support tools.

The memory architectures present in a system also have an impact on the general
pature of the transiation schemes that may be used. For example, the authors have
implemented a subset pretransiation scheme which was intended to allow existing com-
pilers intended for single processor operation to be used for distributed Ada programs
[10]. Accordingly, only two addressing mechanisms were readily available, the local

a4

object referencing scheme and subprogram or task entry calls to system functions to
reference remote objects. This suffices for distributed memory systems in which all
object references are either local or require message passing between systems. However,
in » mixed private/shared memory system, neitber of these schemes will be satisfactory
for the shared memory if the compiler's only knowledge of memory is the local memory
attached to a single processor. The compiler would then be incapable of directly
addressing the shared memory, and accessing it via system calls would be too inefficient.
It would be necessary in this case that the compiler itself have knowledge of at least two
kinds of memory, private and shared, and be able to generate efficient mechanisms for
addressing both, defeating the purpose of the pretransiator approach. The pretransiator
approach, however, can be quite useful for distributed memory systems with only
moderate interprocessor communication speed requirements in which compile time
assignment of program elements to processors is acceptable.

Finally, there is an additional interaction between the memory architecture and
binding time considerations. A massively parallel system, such as the mewly available
bypercube architectures, is almost certainly going to be used differently than s modest
sized loosely coupled architecture. The latter is likely to be used for embedded real-time
systems in which each of the Joosely coupled systems is attached to a different device, all
devices must work together in a coordinated fashion, and the binding specification is
known e priori. While the former may also be part of an embedded real-time system, it
is likely to have some special function in the system, such as image processing, in which
the regularity of the parallel structure is to be exploited in some way. Inm this case, as a
consequence of the homogeneity of the processors, the use to which the individual pro-
cessors are assigned is likely to be determined at run-time. This implies a need for
dynamic creation and distribution of objects in the program. As noted ia the previous
section, Ada lacks adequate mechanisms to deal with this dynamic distribution.

4.3. Impact of Heterogeneity

Heterogeneity impacts both the semantics of a program and the mechanisms for
translating and executing it. One obvious way to deal with differences in processor
types is by designing programs for a virtusl Ada machine and thea makiag the compilers
for each real machine produce code which effectively implements the virtual machine
underneath the transiated user program. However, there is often a sigaificant loss of
efficiency with this approach. From a more pragmatic point of view, it would be very
advantageous if compilers produced for uniprocessor operation could be included in a
distributed translation system with minimum modification. This would almost certainly

require using whatever data representations and mechanisms were natural for a given
processor type. It would also deny translation within the compiler for s virtual Ada
machine. From the user's point of view it will thus be the combination of the processor
type and the compiler that are important, and when we speak of a *‘processor type,” we
will actually mean the combination of the processor type and the translator for it. With
this assumption, we reach the conclusion that a distributed Ada program must include -
processor type information in the distribution specification. Otherwise, the semantics of

the program are ambiguous.

Consider, first, the representation of primative data types, e.g., integers and float-
ing point numbers. Ada provides mechanisms to support portability whick are useful for
distributed execution as well. One can define data types in terms of the ranges needed
and let the implementation choose the underlying base type from which the new type is
derived, with errors being flagged if any processor cannot support the required range.
However, programmers are not obligated to use these mechanisms and the translation
system must then provide some type of data translation. Unfortunately, there is then
no guarantee that e translation is possible, e.g., you can’t represent a 64 bit integer from
machine A with the 16 bits that might be available on machine B. Additional checking
of the distributed program is necessary to ensure the compatibility of representation of
data objects. Thus, knowledge of processor type is required as input to a distnibuted
translation system.

Second, different processors may well bave different values for implementation
dependent constants such as SYSTEM.TICK, and may use different scheduling discip-
lines. These differences may all be in accord with the RM, but when a program
intended for execution on a single processor is moved amongst different btocasors,
drastically different performance may result. It is in general understood that the effect
of the program is dependent upon the implementation. However, when a distributed
program is redistributed amongst a set of processors, the underlying implementation
remains the same (even though the performance might well change), and it is zo longer
appropriate to think of the effect of the program depending upon the implementation.
In this case, we think of the semantics of the distributed program as changing with the
mapping of the original Ada program onto the specific set of processors in the system.
The programmer should thus know or be able to control the type of processor to which
things will be assigned. Tbhe processor type information should be included in the distri-

bution specification.

8. Conclusions

The distributed execution of Ads programs requires further consideration of two
issues: the units which may be distributed and the specification of the program mapping
onto the set of processors and memory to be used. It was argued that the units of distri-
bution should be stated more precisely than presently done in the RM. It was stated
that the program mapping may be divided into two parts, s distribution specification
and » binding specification; the former should be a reqmnd part of a “distributed Ada
program.”

It was recommended that the natural units of distribution for Ada are library pack-
agé and library subprograms. These, in turn, require remote access to individual data
objects, subprograms and tasks. Use of remotely defined types requires replication of
implicit and basic operations at each site creating objects of the type. Dynamically ela-
borated objects, e.g., tasks, need to be placed at the site of elaboration, which creates
certain difficulties with respect to implied access to remote variables and task termina-
tion. The availability of a package type would alleviate some of these difficulties.

The distribution specification should specify the processor type and memory archi-
tecture used for each part of the program. The inclusion of processor type makes expli-
cit program semantics which would otherwise be undetermined due to heterogeneity,
while the memory architecture part of the specification allows the compiler to generate
the correct kind of distributed object access code.

’ There are two principal areas where the authors feel that (hopefully minor) exten-
sions are needed to Ada to handle the distributed execution situation. Since the package
is the recommended distribution unit, mechanisms for dynamically instantisting pack-
ages and specifying the processor on which the new package is to be placed are needed.
Syntax is needed by which remote references can be made explicit. In addition, several
new tools are required: 1) s mechanism for expressing the distribution of a program, 2) »
checker to ensure that the distribution specification is consistent with language rules, 3)
a checker to ensure that a binding specification is consistent with the corresponding dis-
tribution specification, and 4) a decompilation tool which can insert the distribution
specification into the rest of the program (if it was not there in the first place).

Most of the issues raised in this paper are closely related to the language definition.
The authors believe that these issues should be considered in conjunction with the 1988

language definition review.

Acknowledgements: The authors would like to thank Charles Antorelli of the

7

University of Michigan and Roger Racine of Draper Laboratories fg_y their valuable con-

structive comments. Cr

2
Bl
2
o
o
y
o
o

[10)

[11]

References

G. R. Andrews and F. B. Schueider, “Con?eph and notuén? for concurrent ‘pro '
gramming,” Cemputing Surveys, vol. 15, mo. 1, March 1983.

Y
D.M. Harland, “Towards a language for concurrent processe¥,” Seftwere Prectice
end Ezperience, vol. 18§, no. 9, pp. 839-888, 1985. .y

Ads progremming lenguege {ANSI/MIL-STD-MIM) Wasluuton, D.C. 20301:
Ada Joint Program Office, Department of Defense, OUSD(RED), Jan. 1983.

. e
D. Cornbill, “Partitioning Ada programs for execution on distributed systems,”
1984 Computer Deats Engrg. Conf., 1984.

Q
D. Cornbill, “A survivable distributed computing system {6f embedded applica-
tion programs written in Ada,” Ads Letters, Nov./Dec. 1083,

W.H. Jessop, “Ada packages and distributed systems," SIGPLAN Notices,
Feb/Mar 1982. =

Intel, in Reference Manual for Intel 432 Estensions to A‘:a_, 172283-001. Santa
Clara, CA: Intel, 1981. -

J.W. Armitage and J.V. Chelini, 'Ada software on distributed targets: a survey
of approaches,” ACM Ads Letters, vol. IV, no. 4, pp. 32-3%; Jan/Feb 1985.

M. Tedd, S. Crespi-Reghizzi, and A. Natali, Ads [or multc-mcnpnceuon
Cambridge: Cambridge University Press, 1984. ”

R.A. Volz, T.N. Mudge, A.W. Naylor, and J.H. Mayer, “Some problems in distri-
buting real-time ada programs across machines,” Ads in ue, Pnc of the 1985
Int1 Ada Conf., pp. 72-84, May 1985.

R. A. Vols and T. N. Mudge, “‘Robots are (nothing more' thh) abstract data
types,” Proc. of the Robotics Rescarch Conference: the nczt 5 yeers end Beyond,

Aug. 14-16, 1984.

